AILU: a preconditioner based on the analytic factorization of the elliptic operator

نویسندگان

  • Martin J. Gander
  • Frédéric Nataf
چکیده

AILU: A Preconditioner Based on the Analytic Factorization of the Elliptic Operator Martin J. Gander and Frederic Nataf Department of Mathematics, McGill University, Montreal, Canada and CMAP, CNRS UMR7641, Ecole Polytechnique, Palaiseau, France We investigate a new type of preconditioner for large systems of linear equations stemming from the discretization of elliptic symmetric partial differential equations. Instead of working at the matrix level, we construct an analytic factorization of the elliptic operator into two parabolic factors and we identify the two parabolic factors with the LU factors of an exact block LU decomposition at the matrix level. Since these factorizations are nonlocal, we introduce a second order local approximation of the parabolic factors. We analyze the approximate factorization at the continuous level and optimize its performance which leads to the new AILU (Analytic ILU) preconditioner with convergence rate 1 O(h1=3) where h denotes the mesh size. Numerical experiments illustrate the effectiveness of the new approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Relation between Optimized Schwarz Methods and Source Transfer

Optimized Schwarz methods (OS) use Robin or higher order transmission conditions instead of the classical Dirichlet ones. An optimal Schwarz method for a general second-order elliptic problem and a decomposition into strips was presented in [13]. Here optimality means that the method converges in a finite number of steps, and this was achieved by replacing in the transmission conditions the hig...

متن کامل

Complete pivoting strategy for the $IUL$ preconditioner obtained from Backward Factored APproximate INVerse process

‎In this paper‎, ‎we use a complete pivoting strategy to compute the IUL preconditioner obtained as the by-product of the Backward Factored APproximate INVerse process‎. ‎This pivoting is based on the complete pivoting strategy of the Backward IJK version of Gaussian Elimination process‎. ‎There is a parameter $alpha$ to control the complete pivoting process‎. ‎We have studied the effect of dif...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Computing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process

In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000